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Abstract. After a brief discussion of some undesirable features of a number

of different partial differential equations often employed in the existing
literature on water waves, a relatively simple restricted theory is constructed
by a direct approach which is particularly suited for applications to problems

of fluid sheets. The rest of the paper is concerned with a derivation of a
system of nonlinear differential equations (which may include the effects of
gravity and surface tension) governing the two-dimensional motion of incompres-
sible inviscid fluids for propagation of fairly long waves in a nonhomogeneous
stream of water of variable initial depth, as well as some new results pertaining
to hydraulic jumps. The latter includes an additional class of possible solutions
not noted previously.

fMathematical Institute, University of Oxford, Oxford, England.
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1. Introduction

Frequently it is difficult to find exact solutions of systems of linear or
nonlinear differential equations which characterize either a specific problem
or a class of problems in mcchanics. For this reason, in many areas of mechanics

of solids and fluids, widespread use has been made in recent years of approxi-
mate perturbation methods, especially when the system of differential equations
contains one or more small parameters. Usually it is not possible to prove
rigorously that the approximate solutions are related to exact solutions of the
equations in a precise way. Nevertheless, considerable confidence is often
placed in the results, partly because they may be shown to be satisfactory in
special cases for which exact results are available. A slightly different line
of thought is to replace a system of nonlinear differential equations either by
an approximate linear system of the same order, or by a nonlinear system of
lower order. In the former case the linearization method is clearcut
and leads to a unique system of equations. In the latter, the situation is
often very confused: the procedure is singular in that it reduces the order of
the equations and may also lead to some related dilemmas or questions concerning
the associated boundary and initial conditions. Moreover, the procedure is not
unique since it may lead to sets of apparently equally justifiable equations
whose characters are quite different. This is particularly true in the deriva-
tion of nonlinear differential equations which are employed in the study
of the propagation of fairly long water waves, as can be seen from accounts of
the subject given vy Peregrine [1] and by Whitham [2]. In fact, according to
Whitham (2, p. 463], "The...derivations allow great flexibility and the
approach naturally allows the various alternatives."

We list below from [2] some of the slternative forms of equations for water
waves moving in the direction of a fixed x-axis for a stream of initial constant

depth h. Let the elevation of the stream be h+ 1 and let u denote the horizontal
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velocity, where u,T are functions of x and the time t. Further, recall from

[2, pp. 460-463] the system of equations

nt*{u(h*ﬂ)}x =0 ,

(1)
+ + + i ~2} =0
b Rk, gT\x Bk Myxx =
and the pair of equations attributed to Boussinesq, i.e.,
ﬂt+[u(h*ﬂ)}x =0
(2)

1
By L PEIL TS My =0

where subscripts indicate partial differentiation with respect to t or x,
c2-=gh and g is the acceleration due to gravity. Both systems of equations (1)
and (2) allow for wave propagation in either direction along the x-axis. For
waves moving along the positive x-direction only there is the Korteweg-deVries

(hereafter referred to as the K.dV.) equation [3] given by

oo d D by, <o @

or the following equation due to Benjamin et al. [4]:

mte+ddn ey -0 . (1)

Some of the properties of the differential equations (1) to (4) should be
noted. It may immediately be verified that the set of equations (2) and (&)
have steady state solutions only if T and u ere both constants. Also, although
the K.dV. equation (3) admits a solitary wave in which the velocity at infinity
is zero when the stream there is at its undisturbed height h, it does not admit
a steady state solution with u constant and N|=0 at infinity. This fact is
related to another property of (3) which is also shared by (2) and (4): the

three sets of equations (2) to (4) are not invariant in form under a constant
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superposed rigid body motion of the whole fluid. To see this, suppose that a
constant superposed rigid body translational velocity k is imposed on the whole

2 : + . i
fluid so that the particles at the place x are displaced to x at time t where

+ + — - \
X Siaeklet B e e (e constant) | (5)

and the velocity u is replaced by u+k. Then,if the dependent variables x,t in
o) 3 \ . +  +
(2) to (4) are changed to (5), the equations for u,T in terms of x ,t are dif-

ferent from those in terms of x,t. For example, equation (3) becomes

2 1L 2
n,*K ++c(l+=21%)n frzen o, =0 .
t be % X KX

—
[0)Y
~

This means that the character of the solutions of (2), (3) and (4) are radically
altered by superposing a constant rigid body translational velocity on the fluid,
which is contrary to what happens if we use the full three-dimensional equations
of motion for an inviscid fluid. On the other hand, the set of equations (1)
are not subject to this drawback, and they do have useful steady state solutions.
It may be argued that because of the nature of the approximation in obtaining
(2) to (4) from the three-dimensional theory we should not expect these equations
to be invariant under a superposed constant translational velocity, but this then
leaves in doubt which version of any of the sets (2) to (L4) are correct and are
to be chosen as basic. The difficulty disappears if we linearize any of the
sbove sets since the resulting equations are then invariant under a small super-
posed constant translational velocity, as we would expect.

It might appear from the above discussion that the equations (1) may be
preferable to any of (2) to (4), but arguments are put forward in (2, p. 462]
Lo suggest that the set (2) is to be preferred to (1). Although considerable
use has been made of some of the equations (1) to (4), it would seem that they
21l rest on a somewhat shasky physical foundation.

In recent years the derivation of nonlinear equations which are suitable
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for the propagation of fairly long water waves has been approached from a
completely different point of view, namely via the theory of a directed (or
Cosserat) surface. A direct two-dimensional theory of this kind is established
in [5,6] for water waves employing integral balance laws for mass conservation,
momentum, moment of momentum and (when roquired) energy, in parallel with what
is done in the development of the three-dimensional theory, and is valid for
water of variable initial depth. ©Such equations are fully nonlinear and satisfy
a1l usual invariance requirements as do their three-dimensional counterparts.
The resulting field equations of this theory contain certain assigned fields
and inertia coefficients which are unspecified, but these are identified by an
appeal to rather easily accessible results which can be deduced from the three-
dimensional equations. An alternative derivation given in [7] starts from the
three-dimensional energy equation and, after employing a single approximation
for the velocity field, proceeds only with the help of invariance conditions
under superposed rigid body motions and leads to the same system of equations
as those in [5,6].

The present paper is concerned with some extensions of previous work [5,6]
by a direct approach. First, we briefly construct a restricted theory of
directed surfaces in which some of the kinematic and kinetic variables are
restricted at the outset. This restricted theory, which may be regarded as a
special case of a more general theory of a Cosserat surface, is particularly
useful in application to problems of fluid sheets and is utilized in the rest
of the paper for incompressible fluids in which the mass density may vary with
depth. A nonlinear system of (two-dimensional) differential equations is
derived for propagation of water waves in a nonhomogenecus stream of variable
initial depth [see Eqs. (35), (54) and (55)] and some extensions of earlier

work [6, section 8] on hydraulic jumps are discussed.




2. General Background. A Restricted Thcory of Directed Surfaces.

We first discuss, in this eection, some background information from the
theory of a Cosserat (or directed) surface and then swmmarize a special case of
the theory in a manner which is particularly suitable for application to the
propagation of water waves in a nonhomogeneous fluid. We recall that a Cosserat
surface ¢ comprises a material surface (embedded in a Fuclidean 3-space) and a
single deformable director attached to every material point (or particle) of C.
Let the particles of the material surface of ¢ be identified with a system of

convected coordinates' 8% (

a=1,2) and let the swrface occupied by the material
surface of ¢ in the present configuration at time t be referred to by . Let
r and g denote the position vector of a typical point of o and the director at
the same point, respectively, and also designate the base vectors along the
ea—curves on o by gq. Then, a motion of the Cosserat surface is defined by

vector-valued functions which assign position r and director d to each particle

of ¢ at each instant of time, i.e.f

o i
r=r(e%t) , d=de%t) , [aad]l>0 (7)
and the condition (7)3 ensures that the director d is nowhere tangent to .
The base vectors ga and their reciprocals ad, the unit normal a3 and the
components of the metric tensors aaB and aaB at each point of ./ are defined by
or
. ML a o g - § of o, . P
E"'ae"”g‘gﬁsa’aaﬁgﬂ%’a‘ﬁi’
5 ; (8)
24 = = -y
a%ay = a)xa, , 8 det Ep »+ ® [Eifegal =0,

*Recall that when the particles of a continuum are referred to a convected

coordinate system, the numerical values of the coordinates associated with
each material point remain the same for all time.

*The choice of positive sign in (7); is for definiteness. Alternatively, it
will suffice to assume that [a]a2d§;50 with the understanding that in any given
motion the scalar triple product [aja,d] is either >0 or<O.

5.




where 8% is the Kronecker delta. The velocity and the director velocity vectors

B

are given by

e
o

LR

vV =
~

’f’i:

where a superposed dot denotes differentiation with respect to t holding ea
fixed. Throughout this paper, we use standard vector and tensor notations.
In particular, Greek indices take the values 1,2 and the usual summation con-
vention over a subscript and a superscript is employed.

A general theory of a Cosserat surface by Green, Naghdi and Wainwright [8]
is developed within the framework of thermodynamics; the derivation in [8] is
carried out mainly from an appropriate (two-dimensional) energy equation,
together with invariance requirements under superposed rigid body motions.

Here we adopt the mode of derivation of the basic theory given by Naghdi [9]
or the more generalized form of the theory employed by Green and Naghdi [6].
Special cases of the general theory can be obtained by introduction of suitable

constraints, thereby resulting in constrained theories. Alternatively, cor-

responding special cases can be developed in which the kinematic and the kinetic

variables are suitably restricted a priori and then restricted theories are

constructed by direct approach. ©Such special cases of the general theory have
been discussed previously by Naghdi [9, Secs. 10 and 15] and by Green and

Naghdi [10] and are of particular interest in the context of elastic shell
theory. In the present paper, however, we construct another type of restricted
theory which is particularly suited for application to problems of fluid sheets.
The resulting equations can also be obtained as a constrained case of those given
for directed fluid sheets in [6], but we find it more convenient to restrict the
kinematic and the kinetic veriables at the outset and construct a corresponding
restricted theory from an appropriate set of conservation laws in integral form.

|
z We therefore confine asttention here to a theory in which the director d, while
]

6.
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deforming along its length, always remains parallel to a fixed direction

specified by a constant unit vector b. Thus, recalling also (9), we have
~

d = ¢(ea,t)b » W= w(ea,t>g y W= é . (10)

~ ~

Let P, bounded by a closed curve 9P, be a part of , occupied by an arbitrary

material region of the surface of ¢ in the present configuration at time t and

let
v=vy% =ya® (11)
~ ~0 Q~

be t unit normal to 3P. It is convenient at this point to define

cel iditional quantities as follows: The mass density p= p(ev,t) of the

surface o in the present configuration; the contact force N= N(eY,t 5 v) and

the contact director 1E‘orce~r

%:%(ey,t : 1), each per unit length of a curve in
the present configuration; the assigned force £= £( ey,t) and the assigned
director force £= &( eY,t), each per unit mass of the surface o; the intrinsic
(surface) director force m per unit area of /; the inertia coefficient k= k(gY)
which is independent of time and is associated with the director velocity; the
specific internal energy e = e(eY,t); the heat flux h=h(ey,t 3 x) per unit time
and per unit length of a curve dP; the specific heat supply r=r(8Y,t) per unit
time; and the element of area do, and the line element ds of the surface .
Further, in view of the assumed form (10)l for the director, we express M, m

and § in terms of their components along and perpendicular to the unit vector

by Le€ey

~

1"I'he terminology of director couple is also used for M depending on the physical

dimension assumed for the director d. Here we choose d to have the physical
dimension of length so that M has the same physical dimension as N. For
further discussion see [6].

7.




M=M(e¥,t;v)b+bxs(eV,t5y) , S-b=0 ,
m=m(e,t)b+bxs(g',t) , s+b=0 , (12)
L= Z(ev,t)g+gxg(eY,t) S oD

where M, m and f are scalar functions and E, s, ¢ are vector functions of their
arguments. Also, it is convenient to decompose the assigned fields £ and §
into two parts, one of which represents the three-dimensional body force acting
on the continuum which are assumed to be derivable from a potential function
n(£,¢) and the other which represents the effect of applied surface loads on

the major surfaces of the fluid sheet. Thus, we write

+E , 4=(-%+7 . (13)

o F Y

0101
[8)

With the foregoing definitions of the various field quantities and with
reference to the present configuration, the conservation laws for a restricted

theory of a Cosserat surface (different from that discussed in [9] or [10]) are:

d
at Ippdc pa (1ka)
%jpxdc=yp£do+J Nds (14b)
P P P
b ;—tJ' pkw do = b[Jl (Pz-m)do+I Mds]+bx[_‘. (pc-s)dc+J. sds] , (1k4e)
e g P i e ey 3
;_t ]‘ngx‘dc = J' p[£x£+gx (EXS)]dO+J [’{‘JXE‘LQ‘X(ExE)]dS 3 (14a)
e P P
adzj.O[e+n+;j(’\£-i+kw2)]do=_[p(r+§.£+zw)dg+J (N.ve¢Mi-h)ds . (1lke)
P ° ap"' e

In the above equations (lha) is a statement of conservation of mass, (1L4b) the
conservation of linear momentum, (lbc) that of the conservation of the director
momentum, (14d) the conservation of moment of momentum, and (1lle) represents

the conservation of energy. It should be noted that the quantities M and §#




make no contributions to the moment of momentum equation, and the quantities
» and S make no contribution to the energy equation in the present restricted
~ ~
theory.

Under suitable continuity assumptions, the curve force N, the director

force Il and the heat flux h can be expressed as 3
0T R
~ ~
M=My , 8=8% , 8°-p=0 , (15)
B=lgN. s

where the fields Na,Sa,Ma,qa are functions of eY,t. The five conservation equa-

tions in (14) then yield the local equations

1
pa® = y(a¥) , (16)
a5 S
(a2N%) +vyf = NV, (17)
~ ’a ~ ~
1 1 % AL 1
(a2M¥) 5 Y4 =ma +ykw , (a2s%) °{’r i = B, (18)
s ~ P ~ ~
N¥+dx (b & bxs¥ =0
a XN +dx(bxe)+d x(bx8%) =0 , (19)
o ’ Na Moh L
2 - + . + + = 0 0
ages ‘0' e ~ X‘sd i & : Sl

where a comma denotes partial differentiation with respect to the surface

&

3

coordinates eY and a vertical line stands for covariant differentiation with

i

r, respect to the metric tensor of the surface . It should be noted that the
;’
§> vector fields 8% and s are workless and do not contribute to the energy equa-

tion (20).




B Incompressible Inviscid Fluids.

Within the scope of the theory of a Cosserat surface, previously in [6]

constitutive equations have been obtained for a fluid sheet which model the

properties of the three-dimensional isothermal inviscid fluid. Ffor the
present restricted theory, we first note that the conditions of incompressibility

reduce to the single condition

d
at [278,d) =0 . (21)

With the help of (9) and (10), the condition (21) can be rewritten as

af

de gaxg-v fwa, -Bb =0 (22)

~y & ~3

where eaB is the alternating tensor. For an incompressible inviscid fluid at

' constant temperature, the response functions Na,m,Ma are workless, i.e.,
~

NCY

~

Q
: +tmw+Mw =0
oo N 4 (23)

provided v ,w satisfy the constraint condition (22). It can then be shown that
ey

Ea:_po¢eaagax2 3 m:_po’a;3.2 3 Ma-—— O 5 (2h>

where P, is an arbitrary scalar function of eY,t. Moreover, in a manner similar

to that indicated in the appendix of (6], for an inviscid fluid at constant

temperature we also have
q = O s € = O . (25)

. It then follows from (20) that

3

In general, there are two conditions of incompressibility in the theory of
incompressible directed fluid sheets given in [6]. 1In our present development,
since d is specified by (10)1, the second condition is satisfied identically and
the corresponding pressure (arising from the constraint response) is a part of
the response functions for E? and s.

'he development leading to (24) is similar to a more general discussion in
section 4 of [6].

10.
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Also, for the present restricted theory the moment of momentum equation (19)

is satisfied if

S°'¢,a tsp +Po¢eaﬂga(g- ga) =0

~

The last equation is consistent with the restrictions %.b = O, s-b=0 given
in (15) and (12). From (18) and (27), after eliminating s, we obtain the

following equation for s¥.

3
(pa®s?)

Q
+
ke
o
s
{o+]
N
™
R
w
)
—
o’
o4
e
+
0
1
1O

g

11,

(26)

(27)

(28)




L. Water Waves for Nonhomogeneous Stream of Variable Depth.

Our previous discussion of water waves in [6] was confined to one-dimensional
flows. Here we consider two-dimensional flows and at the same time allow our
model to reflect the (three-dimensional) properties of a nonhomogeneous incom-

pressible fluid. Let el,Ee,e3 be a set of right-handed constant orthonormal

base vectors associated with rectangular Cartesian axes and let the position

vector r in (7)l and the director d in (10), be represented as

1

B xgl+yge+¢g3 s g:¢53 s R‘_‘e s (29)

~3

where x,y,{,p are functions of el,ez,t. The velocity v and the director velocity

?

now take the forms

YEug s NG, oy NS Wey (30)
where
R e Sy U N = s W=29 (31)

and we note that the velocity components u,v,A,w may be regarded as functions

of either 61,62,t or of x,y,t. From (30) follow the expressions

Al b g TR Rl (32)

and

u=u, +uu_+vu v v, tuv +vv
X y b X y b

(33)

> .
i

= + +
A 4-uxx+-vxy o W, va "

t t

where as in section 1 the subscripts x,y,t designate partial differentiation
with respect to x,y,t when u,v,\,w are regarded as functions of x,y,t. Also,

by (7), (8) and (29), the base vectors 8, and the unit normal a5 can be expressed
in the forms




a Wi | -

- | - 1 g Y =5 ?

¢ 3 A 2
a = g}_ e. + 2F e + ) o (2L

2 ~al S Lyt B ’ \ 5% )
il 29 ag° ™o
1
2 a(x
a.a®° = {-y_ e, - ¥y e.+te, ) _.(_J..Y_L.
~3 Xl y~2 ~3 a(el’e?)

With the use of (30) and (33), the incompressibility condition (22) assumes

the simpler form
25(ux‘”’y)"’w: g (35)

and, with the help of (24), (32) and (33), the equations of motion (17) and

(l8)lreduce to the forms

X

i yu = yf . e o) - (36)

1 ~ 2\ i

S w7 M
a(e,0 )

YA = Y£ 33 5 (38)
m‘,=%+_a%u.g_2 . o

¢ 7

* 3(9 se )
where p is given by

?. p = Po¢ . (%0)

It remains to specify values for the coefficients y,k, the assigned force f

and the assigned director force g. For this purpose, we are guided by the cor-

responding fluid sheet in the three-dimensional theory in which an incompressible
*

homogeneous fluid under gravity# -2 e3 flows over a bed specified by the

position vector

»
*We use g (instead of g) for gravity and reserve the symbol g for later use

in Eq. (L48).

13.
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= + + 11 )
p = xe) +ye, talx,y)e; (41)

~

and we specify the surface of the fluid by

p = xgl'*YEQ'*B(x,y,t)ga . (k2)

In (41), o is a given function of x,y but B in (42) depends on x,y,t. At the

surface (42) of the stream there is a constant pressure P, and a constant

normal surface tension T. At the bed the (unknown) pressure p depends on X,y
¥

and t. Thus, the fluid moves with the surface (42) and the normal pressure p

at this surface is

o I (43)

where

2 2
e T{(1+B.)8,, - 2B,B.B,, + (1+6,)8 ]

(1+g§+p§)3/2

()

%

At the bed (41) the normal velocity of the fluid is zero and the pressure p

takes the value

*

) I E(X’y,t) s (45)

where 5 is to be determined.

To proceed further, we introduce a set of convected coordinates el Mi=1.2.3),

3

let the surface 9~ = O coincide with the surface o, and consider the three-

dimensional region of space between the surfaces (41) and (42) occupied by the

fluid. Any point in this three-dimensional region is then specified by

p=xe tye,t (¥4 od)e, (46)

~

3

We also suppose Yhat the surfaces 9  =w ~

3

and 8° =w +3, with ¢ a constant to

N~

be determined later, are coincident with (41) and (42), respectively, so that

14,



3
&
|
( 1 Sy 1
N = '|\'U— rz < ﬁ |\ll' P
“
ass density p of the fluid is assumed to vary with depth so that
Y .
g =p (8}
1
The base vectors g. in the above-mentioned three-dimensional region,
‘ ~A .
\ . ’ 3 1 )
} { their conjugat g. and 1 1 it 5 b cn rom 4
~]
[ vt only record re t} formal:
|
| 17 2 ( w |
g= [g. e g ] 5 ONEa )
? =l ~PRS [ 12 4
’ a(e 59 J
}L 2 2 3(7 v
-(y +0°0 Je. - (¢ +087% e +e_] O\XL ¥/
L ¥ W /5, \Y_. 0w /Sy 5 4 P .
X X r~l Yy Y o ~ A il 2\
a(8 ,8 )
| We now make use of the results derived in [6] in order to obtain explicit values
f v,f,4 and the parameter g¢. First, in relation to the top and bottom surfaces
-
l i i
Oof the fluid, we choose the surface 8§ =0 so that the center of mass of the (three-
iimensional) fluid region under consideration always lies on this surface and we
1 then identify this surface with the surface o/ in the theory of Cosserat surface.
'his leads us to impose the condition
+%
LN e
2 = 2 ~ £k 1 ) \
r)xp(e)ede =0 (-2<w<3) (49)

w-=2

which determines . Then, recalling the results in [6], we havw*

1 +é‘ x L 3 +é Sk 3
pa® = y = s e i (87)7p g7de (50)
w=-3 w-3

or equivalently

©
Q/
1

—

(x,y) ’

O'\e ,3 ) a(e ,8 ]

where
+ = +
x 2 DTS e A A 7
= de”’ « —_r yrag .
K r P98 5 K5 1_o(s 49
w=3 W= 2




Also, with the use of (13), (51) and (48), from Eqs. (3.15) of [6] for the

assigned force and the assigned director force we obtain

vE = [{(p -a)8, - Pa, Je) + {(p -a)8, - pa Je,

] 2ly)

- *
t(a-p,+P-g Kple,

51 2
a8 ,62)
ve = [la-p,)(+w) v p(-bva)] 2L
a<9 ,9_) (A/Q)
ve = [(p-0) (b +w)p, ~ -} +wla, o, 2l
3(8 ,087)
- [(p.-q)(3+w)g_-p(-t+w)a le X
(6] * ~2 L 3
= e e, 6}
o
Q=g 4y
Substitution of (51) to (53) into (36) to (39) results in the differential
equations of mofion
Kpu =-p + (po-q)Bx-DaX >
W= <l % (RMEIE, ST,
(54)
) S &
Kh= q-P *p-g Ko
kotw = (a-p,)(k+w) +D(-E+w)+ 5
Moreover, since the bed of the stream is stationary, from (47) and (33)3 ), ve
b
nave
o= uoy tvay = ¥+ (=38 = A+ (w-Bw . (55)

The abuve system of equations is independent of the remaining equations 27)
and (28) which involve S?,i. The fields E?,s correspond to appropriste con-
ctreint responses for the restricted motion (10) considered in the present

paper;and, since they are not completely determined by (27) and (28), there is

16.
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some arbitrariness in their specification. We do not need to consider equations
(27) and (28) further here.

To summarize the results obtained so far, we observe that the propagation
of water waves in a nonhomogeneous incompressible inviscid fluid is governed by
the system of differential equations (35), (54) and (55) with the coefficients
KKy given by (52) and @ determined from (49). When the fluid is homogeneous

with p a constant, it readily follows from (49) and (52) that

*
¥ &
w=0 , K=op s Ke = %5 . (56)

With values (56), the differential equations (35), (54) and (55) become identical
with those derived previously [7] from the three-dimensional theory of homogeneous
incompressible inviscid fluids. For unidirectional flow along the x-direction,
the equations reduce to those obtained in [6] by a direct approach.

The above equations have been derived from the integral balance equations
(l4a-e). With the help of (24), (25), (26), (30), (51) and (53), these integral

balance laws can be reduced to the forms:

R T " .
) Kedxdy =0 (7]
P
d%—j Kpu dxdy = j‘ [(po—q)iax—ffmxldxdy-Jr pdy (58)
P P P
d —_ r
55 | *pvaxdy = | ((p_-q)B -pa Jdxdy+| pdx , (59)
dt Jp J.‘, i Sl Jap
S konaxay = [ (a-p,+p-8"kp)axay , (60)
e P
ar p S
v [ rp o oy - j‘P[a; + (a-py)(b+w) - D - w)laxay (61)

¢ »
i %a[oc(u2+v2+x2)+»c w2+2g Ky )dxdy
dat Jg 2

- jopi(Do'Q)[Bxu* ByV -A- (%‘*w)W]-a[orxu*»ayv -+ (3 -wwl] dxdy

-J‘ p(udy ~vadx) . (62)
P
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Solitary Waves on a Stream with Level Bed.

When the bed of the stream is level and the fluid is homogeneous with a
*
constant value for p , it has been shown in [5] that the system of equations
(35), (54) and (55) admits a solution in the form of a solitary wave. A similsr

solution is possible here even when the fluid is nonhomogeneous with the mass

density p varying with depth. Omitting details, for a wave travelling along

the x-axis with a speed ¢, the solitary wave has the form
L ¢ w(x-ct)
K 5 O ’
2 - 1+ uPsech?[( > JF et (63)
= (1-2m) k4 hwe ]
\«'here:t
o i
() 2 - :
y = ————— , ¢ = gh(l-29) , c“>c° . (64)
<, o o

[
sos

‘Previously [5] the notation A was employed for a quantity corresponding to u
defined by (6&)1. In the present paper, the symbol X\ is utilized for a
different purpose in (39).
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6.  Hydraulic Jumps.

In a previous paper [6, Sec. 8] we discussed hydraulic jumps at a step in
the horizontal bed of a stream. Here we extend the discussion to nonhomogeneous
fluids in which the mass density varies with depth, and at the same time indicate
the nature of an additional class of possible solutions which was not noted in [(6].
We assume steady flow of the fluid parallel to the x-direction in a stream
whose bottom is level except for a finite jump at the origin, and thus we specify

a by

O for x<O0

\k*(w-;_')Q): (x={
d for x>0

P~

(@)Y
N
S

4 = (G-we, forxso ,

where d is a constant. We neglect surface tension so that q=0, for convenience
set the surface pressure po= 0, and consider only steady motions on either side
of x=0 with the possibility that the wave height ¢ at x=0 has a stationary
finite discontinuity. At x=0, we assume that ¢,u,A,w,p change from the values
¢l’ul’ll’w1’pl to the values ¢2,u2,x2,w2,p2. We may than utilize the one-

dimensional form of the equations (57), (58), (60), (61) and (62) with v=0 in

a usual way to obtain the appropriate jump conditions. 'I‘husT
By = Py =0 (66)
Kn(uz-ul) &P =By ek oy (67)
M =h = Geowy = Goow, (68)
Ln(ua-ud) + (3 -0)g"nk(p,-3)) + @' nkd = b u ~pyu, (69)

*The constant n in (66) to (69) corresponds to k in the corresponding jump

conditions given in [6, Sec. 8].




In {6, Sec. 8] the discussion was limited to the special case in which X=0.
However, in general, the quantity X could be nonzero; it arises from the inte-
grated value ;ax in (90) since ;axnm)'become large at the step, E being the
pressure on the bottom of the stream. The term X on the right-hand side of

, therefore, represents the resultant force exerted by the step on the

fluid measured along the positive x—direction? Assuming that the fluid remains

in contact with the step throughout the motion, we impose the conditions

>
1A

Owhend >0 ,

>
v

=z Owhend <0 .

In order to illustrate the differences which arise when X # O, we consider
now the simplest problem dicscussed in [6, Sec. 8]. Thus, when the stream is

level on either side of the step, from (54) we have

K n
¢l:h b pl: (%-W)g Kh ’ ul:H )
(71)
L Ry T =B
¢2 H iy P2 (2 w)g KHz > YU, i
For convenience, we introduce the notations
2
H n e
Rl B mpeas (72)
g (1-2¢)h
and then substitute (71) into (67) and (69) and also use (66) to obtain
e
i " 4 1-2 L-1 o)
S (3 7(141) -17] ,
(73)
g 23(2 & U-Ewl)J(L—l) [er-1-12] .
K h

Yoimilar resultant forces occur in Jjump conditions utilized by Caulk [11] in
his treatment of the problem of fluid flow under a sluice gate based on the
two-dimensional theory of directed fluid sheets [5,6].

20,
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1o

simplify the discussion that follows, we set

Bk 2 o \E
br, = 74+ (75487)2 , br, =-1+ (7 +87)%
1 : 2
('74)

I
F; = (Ll‘+ 21‘)2

T

and then rewrite ((3)l o s

b

d _ (1-29)(L-1) (1, -L)(L+1))

o T 2 il
L
(79)
- 2L (3py)(r,-L) (LT tl)
* 2 L 3 3
Kg h
If we confine attention to values of 7>1, then Tl:>l and @3>1.£br all values

of We

Tn the rest of this discussion, we confine attention to homogeneous fluids

a ki

in which

-

o By s I > g
w=0_ 5 K=o s T3+2 = (u+2'r) (T>1-, T3>l> s (76)

but a parallel discussion can be carried out for nonhomogeneous fluids with

w#0. The previous solution [6, Sec. 8] corresponds to the case for which

(7 -1)3

d
ot = 13 5 08 A0 g H= _TEF_—_ p (77)

On the other hand, if we take the value of d to be that specified by (77)3,
then in addition to (77)l we find a second possible solution for L, namely

P E

o T.+1
2 &
L= g—+ ()7 + 407, (78)
3 3
which satisfies (75)1. It can be verified from (75)2 that the second value of

L. given by (78) corresponds to

i ol S R (79)

in comformity with (70).




To continue, we observe that for values of d/h specified by

d (1,-1)3
0 <E<_ﬁ?;_ (80)

there are in general two positive values of L which satisfy (Yb)l but only one

of these is compatible with (79). Further, if

3
(1,-1) d
3 4.1
_ﬂ——13 g <=y (81)

where dl is a maximum positive value of d for varying L in (75)1, then there

are two values of L corresponding to each value of d/h and both of these
satisfy (79).
A more general discussion of the other problems discussed in [6, Sec. 8]

can be given in a similar manner, but we do not pursue the matter further.
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